Published in

American Society for Microbiology, Journal of Bacteriology, 6(172), p. 2862-2870, 1990

DOI: 10.1128/jb.172.6.2862-2870.1990

Links

Tools

Export citation

Search in Google Scholar

Isolation and characterization of a Treponema pallidum major 60-kilodalton protein resembling the groEL protein of Escherichia coli

Journal article published in 1990 by L. S. Houston, R. G. Cook, S. J. Norris ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A native structure containing the major 60-kilodalton common antigen polypeptide (designated TpN60) was isolated from Treponema pallidum subsp. pallidum (Nichols strain) through a combination of differential centrifugation and sucrose density gradient sedimentation. Gel filtration chromatography indicated that this structure is a high-molecular-weight homo-oligomer of TpN60. Antisera to TpN60 reacted with the groEL polypeptide of Escherichia coli, as determined by immunoperoxidase staining of two-dimensional electroblots. Electron microscopy of the isolated complex revealed a ringlike structure with a diameter of approximately 16 nm which was very similar in appearance to the groEL protein. Comparison of the N-terminal amino acid sequence of TpN60 with the deduced sequences of the E. coli groEL protein, related chaperonin proteins from mycobacteria and Coxiella burnetti, the hsp60 protein of Saccharomyces cerevisiae, the wheat ribulose bisphosphate carboxylase-oxygenase-subunit-binding protein (alpha subunit), and the human P1 mitochondrial protein indicated sequence identity at 8 of 22 to 10 of 22 residues (36 to 45% identity). We conclude that the oligomer of TpN60 is homologous to the groEL protein and related chaperonins found in a wide variety of procaryotes and eucaryotes and thus may represent a heat shock protein involved in protein folding and assembly.