Published in

Wiley, Journal of Anatomy, 3(201), p. 239-256, 2002

DOI: 10.1046/j.1469-7580.2002.00087.x

Links

Tools

Export citation

Search in Google Scholar

The development of the gubernaculum and inguinal closure in the marsupial Macropus eugenii

Journal article published in 2002 by Douglas Coveney, Geoffrey Shaw ORCID, John M. Hutson, Marilyn B. Renfree
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study reports the developmental anatomy of testicular descent and inguinal closure of the tammar wallaby (Macropus eugenii) from birth to maturity. In females the ovary migrated caudally between days 10 and 20 after birth. The gubernaculum differentiates into the round ligament in the abdomen and extra-abdominally as the ilio-marsupialis muscle of the mammary glands. In males the testes migrated to the internal inguinal ring by day 20 post partum (pp), coinciding with the enlargement of the gubernaculum, and from the internal inguinal ring to the scrotum between days 20 and 65 pp. During descent there was an increase in the hyaluronic acid concentration in cells of the gubernaculum and scrotum. Development of the cremaster muscle began by day 10 pp on the periphery of the gubernaculum and its basic structure was completed by day 60 pp. After descent the inguinal canal closed between days 50 and 60 pp, but a small irregular lumen persisted, somewhat similar to that seen in the congenital scrotal hydrocoele of humans. Tammars have a hopping mode of locomotion and, like humans, are essentially bipedal. We suggest that inguinal closure evolved in these two species because their upright posture may otherwise lead to a high incidence of inguinal hernias.