Published in

Wiley, Journal of Applied Polymer Science, 32(132), p. n/a-n/a, 2015

DOI: 10.1002/app.42363

Links

Tools

Export citation

Search in Google Scholar

Novel polyketones with pendant imidazolium groups as nanodispersants of hydrophobic antibiotics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we present a new method to nanodisperse the pH-sensitive antibiotics oxolinic acid and flumequine by the use of a pH-sensitive synthetic polyketone derivative with amphiphilic characteristics. The pH-sensitive polymer bears imidazolium residues on pendant groups as weak acids, and its solvophobic properties can be tuned by changing the pH. While the antibiotics are soluble in water at pHs higher than 7.0 for flumequine and 8.4 for oxolinic acid, and the polymer is soluble in water at pHs lower than 5.5, nanoprecipitates presenting hydrodynamic radius of 35–100 nm and positive zeta potential containing both the polymer and any of the antibiotics are formed at pH 6.8 by mixing stock solutions whose pH has been adjusted to 5.4 for the polymer and higher than 10 for the antibiotics. The out-of-equilibrium process occurring upon mixing both solutions produces pH changing, molecular arrangement, and a controlled collapse of the system in the form of nano- and submicron particles. The driving forces for the arrangements are found among hydrophobic forces, long-range electrostatic interactions, and short range aromatic–aromatic interactions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42363.