Published in

American Chemical Society, Analytical Chemistry, 3(84), p. 1360-1366, 2012

DOI: 10.1021/ac202314n

Links

Tools

Export citation

Search in Google Scholar

Mapping Spatiotemporal Molecular Distributions Using a Microfluidic Array

Journal article published in 2011 by N. Scott Lynn, Stuart Tobet, Charles S. Henry ORCID, David S. Dandy
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The spatial and temporal distributions of an extensive number of diffusible molecules drive a variety of complex functions. These molecular distributions often possess length scales on the order of a millimeter or less; therefore, microfluidic devices have become a powerful tool to study the effects of these molecular distributions in both chemical and biological systems. Although there exist a number of studies utilizing microdevices for the creation of molecular gradients, there are few, if any, studies focusing on the measurement of spatial and temporal distributions of molecular species created within the study system itself. Here we present a microfluidic device capable of sampling multiple chemical messengers in a spatiotemporally resolved manner. This device operates through spatial segregation of nanoliter-sized volumes of liquid from a primary sample reservoir into a series of analysis microchannels, where fluid pumping is accomplished via a system of passive microfluidic pumps. Subsequent chemical analysis within each microchannel, achieved via optical or bioanalytical methods, yields quantitative data on the spatial and temporal information for any analytes of interest existing within the sample reservoir. These techniques provide a simple, cost-effective route to measure the spatiotemporal distributions of molecular analytes, where the system can be tailored to study both chemical and biological systems.