Published in

Optica, Optical Materials Express, 5(2), p. 594, 2012

DOI: 10.1364/ome.2.000594

Links

Tools

Export citation

Search in Google Scholar

Perspective on synthesis, device structures, and printing processes for quantum dot displays

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantum dot-based light emitting diodes have extensively been investigated over the past two decades in order to utilize high color purity and photophysical stability of quantum dots. In this review, progresses on the preparation of quantum dots, structural design of electroluminescence devices using quantum dots, and printing processes for full-color quantum dot display will be discussed. The obstacles originating from the use of heavy metals, large hole injection barrier, and imperfect printing processes for pixilation have limited the practical applications of quantum dot-based devices. It is expected that recent complementary approaches on materials, device structures, and new printing processes would accelerate the realization of quantum dot displays.