Springer (part of Springer Nature), Current Microbiology, 4(63), p. 354-359
DOI: 10.1007/s00284-011-9984-3
Full text: Download
Staphylococcus epidermidis is the most frequent cause of nosocomial sepsis and catheter-related infections in which biofilm formation is considered to be one of the main virulence mechanisms. Moreover, their increased resistance to conventional antibiotic therapy enhances the need to develop new therapeutical agents. Farnesol, a natural sesquiterpenoid present in many essential oils, has been described as impairing bacterial growth. The aim of this study was to evaluate the effect of farnesol on the structure and composition of biofilm matrix of S. epidermidis. Biofilms formed in the presence of farnesol (300 μM) contained less biomass, and displayed notable changes in the composition of the biofilm matrix. Changes in the spacial structure were also verified by confocal scanning laser microscopy (CSLM). The results obtained by the quantification of extracellular polymers and by wheat germ agglutinin (WGA) fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-D: -glucosamine support the hypothesis that farnesol causes disruption of the cytoplasmic membrane and consequently release of cellular content.