Published in

Springer Verlag, Nano Research, 4(4), p. 360-369

DOI: 10.1007/s12274-010-0090-9

Links

Tools

Export citation

Search in Google Scholar

Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradation of organic stains on the surface of flexible freestanding cellulose/catalyst composite films and in generation of hydrogen from ethanol using both suspended and immobilized catalysts are demonstrated. The performance of the nanofiber-based TiO2 materials is competitive with and in some cases outperforms their conventional nanoparticle-based counterparts. In all cases, Pd-decorated TiO2 nanoparticles and nanofibers proved to be more efficient than their Pt-based counterparts, which could be explained on the basis of the formation of nano-sized Schottky interfaces at the contacts between TiO2 and metal nanoparticles. The feasibility of forming cellulose/catalyst composites provides a novel way of utilizing photocatalyst materials in large-area coatings and freestanding films.