Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 9(1811), p. 556-563

DOI: 10.1016/j.bbalip.2011.05.014

Links

Tools

Export citation

Search in Google Scholar

Type II interleukin-1 receptor expression is reduced in monocytes/macrophages and atherosclerotic lesions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Type II interleukin-1 receptor (IL-1R2) is a non-signaling decoy receptor that negatively regulates the activity of interleukin-1 (IL-1), a pro-inflammatory cytokine involved in atherogenesis. In this article we assessed the relevance of IL-1R2 in atherosclerosis by studying its expression in monocytes from hyperlipidemic patients, in THP-1 macrophages exposed to lipoproteins and in human atherosclerotic lesions. Our results showed that the mRNA and protein expression of IL-1R2 was reduced in monocytes from patients with familial combined hyperlipidemia (-30%, p<0.05). THP-1 macrophages incubated with increasing concentrations of acetylated low density (ac-LDL) and very low density (VLDL) lipoproteins also exhibit a decrease in IL-1R2 mRNA and protein levels. Pre-incubation with agents that block intracellular accumulation of lipids prevents the decrease in IL-1R2 mRNA caused by lipoproteins. Lipoproteins also prevented the increase in IL-1R1 and IL-1R2 caused by a 4-h stimulation with LPS and reduced protein expression of total and phosphorylated IL-1 receptor-associated kinase-1. Finally, IL-1R2 expression in human atherosclerotic vessels was markedly lower than in non-atherosclerotic arteries (-80%, p<0.0005). Overall, our results suggest that under atherogenic conditions, there is a decrease in IL-1R2 expression in monocytes/macrophages and in the vascular wall that may facilitate IL-1 signaling.