Published in

American Astronomical Society, Astrophysical Journal, 1(746), p. 19, 2012

DOI: 10.1088/0004-637x/746/1/19

Links

Tools

Export citation

Search in Google Scholar

Two types of magnetic reconnection in coronal bright points and the corresponding magnetic configuration

Journal article published in 2012 by Q. M. Zhang, P. F. Chen, Y. Guo ORCID, C. Fang, M. D. Ding
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Coronal bright points (CBPs) are long-lived small-scale brightenings in the solar corona. They are generally explained by magnetic reconnection. However, the corresponding magnetic configurations are not well understood. We carry out a detailed multi-wavelength analysis of two neighboring CBPs on 2007 March 16, observed in soft X-ray (SXR) and EUV channels. It is seen that the SXR light curves present quasi-periodic flashes with an interval of ~1 hr superposed over the long-lived mild brightenings, suggesting that the SXR brightenings of this type of CBPs might consist of two components: one is the gentle brightenings and the other is the CBP flashes. It is found that the strong flashes of the bigger CBP are always accompanied by SXR jets. The potential field extrapolation indicates that both CBPs are covered by a dome-like separatrix surface, with a magnetic null point above. We propose that the repetitive CBP flashes, as well as the recurrent SXR jets, result from the impulsive null-point reconnection, while the long-lived brightenings are due to the interchange reconnection along the separatrix surface. Although the EUV images at high-temperature lines resemble the SXR appearance, the 171 Å and 195 Å channels reveal that the blurry CBP in SXR consists of a cusp-shaped loop and several separate bright patches, which are explained to be due to the null-point reconnection and the separatrix reconnection, respectively.