Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 25(93), p. 14680-14685, 1996

DOI: 10.1073/pnas.93.25.14680

Links

Tools

Export citation

Search in Google Scholar

Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present an approach to map large numbers of Tc1 transposon insertions in the genome of Caenorhabditis elegans. Strains have been described that contain up to 500 polymorphic Tc1 insertions. From these we have cloned and shotgun sequenced over 2000 Tc1 flanks, resulting in an estimated set of 400 or more distinct Tc1 insertion alleles. Alignment of these sequences revealed a weak Tc1 insertion site consensus sequence that was symmetric around the invariant TA target site and reads CAYATATRTG. The Tc1 flanking sequences were compared with 40 Mbp of a C. elegans genome sequence. We found 151 insertions within the sequenced area, a density of approximately 1 Tc1 insertion in every 265 kb. As the rest of the C. elegans genome sequence is obtained, remaining Tc1 alleles will fall into place. These mapped Tc1 insertions can serve two functions: (i) insertions in or near genes can be used to isolate deletion derivatives that have that gene mutated; and (ii) they represent a dense collection of polymorphic sequence-tagged sites. We demonstrate a strategy to use these Tc1 sequence-tagged sites in fine-mapping mutations.