Published in

Elsevier, Chemico-Biological Interactions: A journal of molecular, cellular and biochemical toxicology, (216), p. 17-25, 2014

DOI: 10.1016/j.cbi.2014.03.010

Links

Tools

Export citation

Search in Google Scholar

Cordycepin induces apoptosis of C6 glioma cells through the adenosine 2A receptor-p53-caspase-7-PARP pathway

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cordycepin, 3'-deoxyadenosine from Cordyceps sinensis, has been shown to exert anti-tumor effects in several cancer cell lines. This study investigated the effect of cordycepin on a rat glioma cell line. Cordycepin caused apoptosis in C6 glioma cells in a time- and concentration-dependent manner, but did not affect the survival of primary cultured rat astrocytes. Cordycepin increased the total protein levels of p53 and phosphorylated p53 in the C6 cells. Levels of cleaved caspase-7 and poly (ADP-ribose) polymerase (PARP), but not cleaved caspase-3, were also increased after cordycepin treatment. Specific inhibitors for p53 and caspases abrogated cordycepin-induced caspase-7 and PARP cleavage, and prevented cordycepin-induced apoptosis. Moreover, siRNA knockdown of p53 blocked cordycepin-induced cleavage of caspase-7 and PARP. Both adenosine 2A receptor (A2AR) antagonist and small interference RNA (siRNA) knockdown of A2AR blocked cordycepin-induced apoptosis, p53 activation, and caspase-7 and PARP cleavage. These may provide a new strategy of cordycepin for glioma therapy in the future. (c) 2014 Elsevier Ireland Ltd. All rights reserved. ; 解剖學暨細胞生物學科暨研究所 ; 醫學院 ; 期刊論文