Published in

Wiley, Surface and Interface Analysis, 4(44), p. 484-490, 2011

DOI: 10.1002/sia.3879

Links

Tools

Export citation

Search in Google Scholar

Bulk and surface analysis of Ti1–xFexO2/Fe2O3 composites prepared by solid state reaction for photocatalytic applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ti1–xFexO2 / Fe2O3 (x = 0.3, 0.6, and 0.7 wt%) composites were prepared by solid state reaction of the oxides TiO2 (rutile phase) and Fe2O3 at 550 °C. The following techniques were applied for the characterization of the composites: X-ray powder diffraction, Mössbauer spectroscopy, SEM, energy dispersive X-ray spectroscopy and adsorption of nitrogen. The anatase/rutile/hematite ratio and the abundance of Fe3+ were quantified. The results indicate that Fe3+ substituted Ti4+ in the rutile structure and that the α-Fe2O3 phase was predominantly on the surface of the crystalline Ti1–xFexO2 powders. A substantial increase of the materials density, with respect to rutile, favoured the application of the composites in photocatalytic experiments. The performance of the solids upon the photodegradation of aqueous solutions of carbofuran was evaluated. The Lewis sites created in the composites correlated directly with the photodegradation rate constant of carbofuran and the decrease of the total organic carbon content in the treated solutions. Copyright © 2011 John Wiley & Sons, Ltd.