Published in

American Chemical Society, Biomacromolecules, 12(11), p. 3548-3555, 2010

DOI: 10.1021/bm101020e

Links

Tools

Export citation

Search in Google Scholar

Noncovalent Liposome Linkage and Miniaturization of Capsosomes for Drug Delivery

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the synthesis of poly(methacrylic acid)-co-(oleyl methacrylate) with three different amounts of oleyl methacrylate and compare the ability of these polymers with that of poly(methacrylic acid)-co-(cholesteryl methacrylate) (PMA(c)) to noncovalently anchor liposomes to polymer layers. We subsequently assembled ∼1 μm diameter PMA(c)-based capsosomes, polymer hydrogel capsules that contain up to ∼2000 liposomal subcompartments, and investigate the potential of these carriers to deliver water-insoluble drugs by encapsulating two different antitumor compounds, thiocoraline or paclitaxel, into the liposomes. The viability of lung cancer cells is used to substantiate the cargo concentration-dependent activity of the capsosomes. These findings cover several crucial aspects for the application of capsosomes as potential drug delivery vehicles.