Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 12(12), p. 5429-5446, 2012

DOI: 10.5194/acp-12-5429-2012

Links

Tools

Export citation

Search in Google Scholar

New representation of water activity based on a single solute specific constant to parameterize the hygroscopic growth of aerosols in atmospheric models

Journal article published in 2012 by S. Metzger ORCID, B. Steil, L. Xu, J. E. Penner, J. E., J. Lelieveld
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Water activity is a key factor in aerosol thermodynamics and hygroscopic growth. We introduce a new representation of water activity (aw), which is empirically related to the solute molality (μs) through a single solute specific constant, νi. Our approach is widely applicable, considers the Kelvin effect and covers ideal solutions at high relative humidity (RH), including cloud condensation nuclei (CCN) activation. It also encompasses concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). The constant νi can thus be used to parameterize the aerosol hygroscopic growth over a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. In contrast to other aw-representations, our νi factor corrects the solute molality both linearly and in exponent form x · ax. We present four representations of our basic aw-parameterization at different levels of complexity for different aw-ranges, e.g. up to 0.95, 0.98 or 1. νi is constant over the selected aw-range, and in its most comprehensive form, the parameterization describes the entire aw range (0–1). In this work we focus on single solute solutions. νi can be pre-determined with a root-finding method from our water activity representation using an aw−μs data pair, e.g. at solute saturation using RHD and solubility measurements. Our aw and supersaturation (Köhler-theory) results compare well with the thermodynamic reference model E-AIM for the key compounds NaCl and (NH4)2SO4 relevant for CCN modeling and calibration studies. Envisaged applications include regional and global atmospheric chemistry and climate modeling.