Dissemin is shutting down on January 1st, 2025

Published in

American Society for Cell Biology, Molecular Biology of the Cell, 12(11), p. 4217-4225

DOI: 10.1091/mbc.11.12.4217

Links

Tools

Export citation

Search in Google Scholar

The Carboxy-terminal Cysteine of the Tetraspanin L6 Antigen Is Required for Its Interaction with SITAC, a Novel PDZ Protein

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

PDZ domains are protein modules that mediate protein-protein interactions. Here, we present the identification and characterization of a protein similar to the recently identified PDZ-containing protein TACIP18, which we have named SITAC (similar to TACIP18). SITAC is preferentially expressed in cells of the digestive tract, associated with intracellular membranes. Despite the high degree of sequence identity between the PDZ domains of TACIP18 and those of SITAC, none of the known ligands of the former shows interaction with the latter, as judged by two-hybrid analysis. SITAC interacts with peptides containing bulky hydrophobic amino acids two positions upstream of the C-terminal residue. Surprisingly, SITAC also shows interaction with peptides ending in C, a previously unacknowledged ability of PDZ domains. The sequence -Y-X-C-COOH, bound in vitro by SITAC, is present in the member of the tetraspanin superfamily, the L6 antigen. Coimmunoprecipitation experiments show that SITAC interacts with L6A, but not with an L6A C-terminal mutant, confirming the capacity of SITAC to interact with proteins ending in C. Confocal analysis shows that the interaction between L6A and SITAC is necessary for the precise colocalization of both molecules in the same subcellular compartment. In summary, the characterization of the protein SITAC has unveiled novel sequences recognized by PDZ domains, and it suggests that L6A is a natural ligand of this PDZ protein.