Published in

American Chemical Society, ACS Medicinal Chemistry Letters, 2(6), p. 128-133, 2014

DOI: 10.1021/ml5003458

Links

Tools

Export citation

Search in Google Scholar

Syntheses and Antituberculosis Activity of 1,3-Benzothiazinone Sulfoxide and Sulfone Derived from BTZ043

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The discovery of 1,3-benzothiazin-4-ones (BTZs), especially BTZ043 and PBTZ-169 as potent agents for the treatment of tuberculosis, prompted intensive research related to development of potential antituberculosis agents based on electron deficient nitroaromatic scaffolds. Herein we report the syntheses, computational and NMR studies and anti-TB activity of oxidation products, 1,3-benzothiazinone sulfoxide (BTZ-SO) and 1,3-benzothiazinone sulfone (BTZ-SO2) derived from BTZ043. The combined computational and NMR work revealed differences in the total charge densities and molecular shapes of the oxidation products. While docking studies still suggested similar interactions and binding patterns for both products with the target DprE1 enzyme, antituberculosis assays indicated remarkable differences in their activity. Interestingly, BTZ-SO possesses potent activity against nonpathogenic and pathogenic mycobacterial strains, but BTZ-SO2 is only weakly active.