A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Full text: Download

Publisher: American Chemical Society

Preprint: archiving restricted: Upload

  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines

Postprint: archiving restricted: Upload

  • If mandated by funding agency or employer/ institution
  • If mandated to deposit before 12 months, must obtain waiver from Institution/Funding agency or use AuthorChoice
  • 12 months embargo

Published version: archiving forbidden. Upload

Policy details (opens in a new window). Data provided by SHERPA/RoMEO
Abstract
The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight and graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1,000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a promising candidate for next generation energy storage systems.