Elsevier, Metabolic Engineering Communications, (2), p. 13-22, 2015
DOI: 10.1016/j.meteno.2015.03.001
Full text: Download
There is a demand to develop 3rd generation biorefineries that integrate energy production with the production of higher value chemicals from renewable feedstocks. Here, robust and stress-tolerant industrial strains of Saccharomyces cerevisiae will be suitable production organisms. However, their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR-Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene in several unrelated strains with the efficiency ranging between 65–78%. We also achieved simultaneous disruption and knock-in of a reporter gene, and demonstrate the applicability of the method by designing lactic acid-producing strains in a single transformation event, where insertion of a heterologous gene and disruption of two endogenous genes occurred simultaneously. Our study provides a foundation for efficient engineering of industrial yeast cell factories.