Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Hydrological Processes, 5(23), p. 702-718, 2009

DOI: 10.1002/hyp.7171

Links

Tools

Export citation

Search in Google Scholar

Process identification through rejection of model structures in a mid-mountainous rural catchment: Observations of rainfall-runoff response, geophysical conditions and model inter-comparison

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The intention of the presented study is to gain a better understanding of the mechanisms that caused the bimodal rainfall–runoff responses which occurred up to the mid-1970s regularly in the Schäfertal catchment and vanished after the onset of mining activities. Understanding this process is a first step to understanding the ongoing hydrological change in this area. It is hypothesized that either subsurface stormflow, or fast displacement of groundwater could cause the second delayed peak. A top-down analysis of rainfall–runoff data, field observations as well as process modelling are combined within a rejectionistic framework. A statistical analysis is used to test whether different predictors, which characterize the forcing, near surface water content and deeper subsurface store, allow the prediction of the type of rainfall–runoff response. Regression analysis is used with generalized linear models as they can deal with non-Gaussian error distributions as well as a non-stationary variance. The analysis reveals that the dominant predictors are the pre-event discharge (proxy of state of the groundwater store) and the precipitation amount. In the field campaign, the subsurface at a representative hillslope was investigated by means of electrical resistivity tomography in order to identify possible strata as flow paths for subsurface stormflow. A low resistivity in approximately 4 m depth—either due to a less permeable layer or the groundwater surface—was detected. The former could serve as a flow path for subsurface stormflow. Finally, the physical-based hydrological model CATFLOW and the groundwater model FEFLOW are compared with respect to their ability to reproduce the bimodal runoff responses. The groundwater model is able to reproduce the observations, although it uses only an abstract representation of the hillslopes. Process model analysis as well as statistical analysis strongly suggest that fast displacement of groundwater is the dominant process underlying the bimodal runoff reactions. Copyright © 2009 John Wiley & Sons, Ltd.