Published in

Elsevier, Molecular and Cellular Endocrinology, 1-2(320), p. 51-57, 2010

DOI: 10.1016/j.mce.2010.02.017

Links

Tools

Export citation

Search in Google Scholar

Dehydroepiandrosterone (DHEA) treatment in vitro inhibits adipogenesis in human omental but not subcutaneous adipose tissue

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dehydroepiandrosterone (DHEA), a precursor sex steroid, circulates in sulphated form (DHEAS). Serum DHEAS concentrations are inversely correlated with metabolic syndrome components and in vivo/in vitro studies suggest a role in modulating adipose mass. To investigate further, we assessed the in vitro biological effect of DHEA in white (3T3-L1) and brown (PAZ6) preadipocyte cell lines and human primary preadipocytes. DHEA (from 10(-8)M) caused concentration-dependent proliferation inhibition of 3T3-L1 and PAZ6 preadipocytes. Cell cycle analysis demonstrated unaltered apoptosis but indicated blockade at G1/S or G2/M in 3T3-L1 and PAZ6, respectively. Preadipocyte cell-line adipogenesis was not affected. In human primary subcutaneous and omental preadipocytes, DHEA significantly inhibited proliferation from 10(-8)M. DHEA 10(-7)M had opposing effects on adipogenesis in the two fat depots. Subcutaneous preadipocyte differentiation was unaffected or increased whereas omental preadipocytes showed significantly reduced adipogenesis. We conclude that DHEA exerts fat depot-specific differences which modulate body composition by limiting omental fat production.