American Chemical Society, Journal of Agricultural and Food Chemistry, 23(57), p. 11186-11193
DOI: 10.1021/jf9029139
Full text: Download
Bacteria are able to communicate and coordinate certain processes using small secreted signaling molecules called autoinducers. This phenomenon, known as "quorum sensing" (QS), may be essential for the synchronization of virulence factors as well as biofilm development. The interruption of bacterial QS is acknowledged to attenuate virulence and considered to be a potential new therapy to treat infections caused by pathogenic bacteria. N-Acyl-L-homoserine lactones (AHLs) have been identified as the main bacterial signaling molecules in Gram-negative bacteria. This study evaluates the capacity of chestnut honey and its aqueous and methanolic extracts to inhibit bacterial AHL-controlled processes in Erwinia carotovora , Yersinia enterocolitica , and Aeromonas hydrophila . This study is the first in applying liquid chromatography coupled with tandem mass spectrometry to determine the QS inhibitory activity of honey against pathogenic bacteria. The tandem mass spectrometry analysis of culture supernatants confirmed the presence of three main AHLs: N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-hexanoyl-L-homoserine lactone (C6-HSL) in E. carotovora and Y. enterocolitica and N-butanoyl-L-homoserine lactone (C4-HSL) in A. hydrophila. The effect of chestnut honey and its aqueous and methanolic extracts (0.2 g/mL) on AHL concentration and biofilm formation in bacterial cultures was determined. The obtained results revealed their potential use as QS inhibitors or regulators of the degradation of QS signals, with the methanolic extract showing less inhibitory capacity. Thus, the QS inhibitory activity of chestnut honey seems to be related to the aqueous phase, suggesting that the carbohydrate fraction contains an antipathogenic substance responsible for the inhibitory activity.