Dissemin is shutting down on January 1st, 2025

Published in

Proceedings of the 9th annual conference on Genetic and evolutionary computation - GECCO '07

DOI: 10.1145/1276958.1277203

Links

Tools

Export citation

Search in Google Scholar

A study on metamodeling techniques, ensembles, and multi-surrogates in evolutionary computation

Proceedings article published in 2007 by Dudy Lim, Yew-Soon Ong, Yaochu Jin ORCID, Bernhard Sendhoff
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Surrogate-Assisted Memetic Algorithm (SAMA) is a hybrid evolutionary algorithm, particularly a memetic algorithm that employs surrogate models in the optimization search. Since most of the objective function evaluations in SAMA are approximated, the search performance of SAMA is likely to be affected by the characteristics of the models used. In this paper, we study the search performance of using different meta modeling techniques, ensembles, and multi-surrogates in SAMA. In particular, we consider the SAMA-TRF, a SAMA model management framework that incorporates a trust region scheme for interleaving use of exact objective function with computationally cheap local meta models during local searches. Four different metamodels, namely Gaussian Process (GP), Radial Basis Function (RBF), Polynomial Regression (PR), and Extreme Learning Machine (ELM) neural network are used in the study. Empirical results obtained show that while some metamodeling techniques perform best on particular benchmark problems, ensemble of metamodels and multisurrogates yield robust and improved solution quality on the benchmark problems in general, for the same computational budget.