Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 10(1811), p. 607-616, 2011

DOI: 10.1016/j.bbalip.2011.06.022

Links

Tools

Export citation

Search in Google Scholar

The thermoacidophilic archaeon Sulfolobus acidocaldarius contains an unsually short, highly reduced dolichyl phosphate

Journal article published in 2011 by Ziqiang Guan, Benjamin H. Meyer ORCID, Sonja-Verena Albers ORCID, Jerry Eichler
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polyprenoids, polymers containing varied numbers of isoprene subunits, serve numerous roles in biology. In Eukarya, dolichyl phosphate, a phosphorylated polyprenol bearing a saturated α-end isoprene subunit, serves as the glycan carrier during N-glycosylation, namely that post-translational modification whereby glycans are covalently linked to select asparagine residues of a target protein. As in Eukarya, N-glycosylation in Archaea also relies on phosphorylated dolichol. In this report, LC-ESI/MS/MS was employed to identify a novel dolichyl phosphate (DolP) in the thermoacidophilic archaeon, Sulfolobus acidocaldarius. The unusually short S. acidocaldarius DolP presents a degree of saturation not previously reported. S. acidocaldarius DolP contains not only the saturated α- and ω-end isoprene subunits observed in other archaeal DolPs, but also up to five saturated intra-chain isoprene subunits. The corresponding dolichol and hexose-charged DolP species were also detected. The results of the present study offer valuable information on the biogenesis and potential properties of this unique DolP. Furthermore, elucidation of the mechanism of α-isoprene unit reduction in S. acidocaldarius dolichol may facilitate the identification of the alternative, as yet unknown polyprenol reductase in Eukarya.