Published in

Wiley, Chemistry - A European Journal, 30(20), p. 9176-9183, 2014

DOI: 10.1002/chem.201402452

Links

Tools

Export citation

Search in Google Scholar

Ultrathin Silica Films: The Atomic Structure of Two-Dimensional Crystals and Glasses

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

For the last 15 years, we have been studying the preparation and characterization of ordered silica films on metal supports. We review the efforts so far, and then discuss the specific case of a silica bilayer, which exists in a crystalline and a vitreous variety, and puts us into a position to investigate, for the first time, the real space structure (AFM/STM) of a two-dimensional glass and its properties. We show that pair correlation functions determined from the images of this two-dimensional glass are similar to those determined by X-ray and neutron scattering from three-dimensional glasses, if the appropriate sensitivity factors are taken into account. We are in a position, to verify, for the first time, a model of the vitreous silica structure proposed by William Zachariasen in 1932. Beyond this, the possibility to prepare the crystalline and the glassy structure on the same support allows us to study the crystal-glass phase transition in real space. We, finally, discuss possibilities to use silica films to start investigating related systems such as zeolites and clay films. We also mention hydroxylation of the silica films in order to adsorb metal atoms modeling heterogenized homogeneous catalysts.