Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 9(113), p. 2815-2825, 2009

DOI: 10.1021/jp810141d

Links

Tools

Export citation

Search in Google Scholar

Towards an Understanding of the Mutual Solubilities of Water and Hydrophobic Ionic Liquids in the Presence of Salts: The Anion Effect

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The understanding of the specific interactions between salt ions and ionic liquids (ILs) in aqueous solutions is relevant in multiple applications. The influence of a series of anions on the solubility of 1-butyl-3-methylimidazolium tricyanomethane in aqueous environment was here studied. This study aims at gathering further information to evaluate the recently proposed mechanisms of salting-in- and salting-out-inducing ions in aqueous solutions of ILs and to provide insights at the molecular-level on the phenomena occurring in these systems. The observed effect of the inorganic species on the aqueous solubility of the ionic liquid qualitatively follows the Hofmeister series, and it is dependent on the nature and concentration of the anions. The liquid-liquid equilibrium data and 1H NMR results here reported support a model according to which salting-in- and salting-out-inducing ions operate by essentially different mechanisms. While salting-out is an entropically driven effect resulting from the formation of hydration complexes and the increase of the surface tension of cavity formation, the salting-in phenomena is a consequence of the direct binding of the ions to the hydrophobic moieties of the IL. Further evidence here obtained suggests that the interactions of the inorganic ions are not only established with the cation of the IL, but also with the anion, with the observed solubility effect the result of a balance between those two types of interactions.