Published in

American Physical Society, Physical review B, 4(80), 2009

DOI: 10.1103/physrevb.80.045303

Links

Tools

Export citation

Search in Google Scholar

Quantum Hall droplet laterally coupled to a quantum ring

Journal article published in 2009 by E. Tölö, A. Harju ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We study a two-dimensional cylindrically-symmetric electron droplet separated from a surrounding electron ring by a tunable barrier using the exact diagonalization method. The magnetic field is assumed strong so that the electrons become spin-polarized and reside on the lowest Fock-Darwin band. We calculate the ground state phase diagram for 6 electrons. At weak coupling, the phase diagram exhibits a clear diamond structure due to the blockade caused by the angular momentum difference between the two systems. We find separate excitations of the droplet and the ring as well as the transfer of charge between the two parts of the system. At strong coupling, interactions destroy the coherent structure of the phase diagram, while individual phases are still heavily affected by the potential barrier. Comment: 7 pages, 7 figures