Cambridge University Press, Radiocarbon, 2(46), p. 621-626, 2004
DOI: 10.1017/s0033822200035669
Full text: Download
Lake sediments have the potential to preserve proxy records of past climate change. Organic material suitable for radiocarbon dating often provides age control of such proxy records. Six shallow freshwater lakes on the sub-Antarctic island of South Georgia were investigated for carbon reservoir effects that may influence age-depth profiles from lake sediment records in this important region. Paired samples of particulate organic matter (POM) from the water column and surface sediment (bulk organic carbon) were analyzed by accelerator mass spectrometry 14C. POM in 4 lakes was found to be in equilibrium with the atmosphere (~107% modern), whereas 2 lakes showed significant depletion of 14C. In each lake, the surface sediment ages were older than the paired POM age. Surface sediment ages showed a much greater range of ages compared to the equivalent POM ages, even for lakes located in close proximity. We conclude that sediment disturbance during coring, bioturbation, and periodic resuspension of sediments are likely factors causing the difference in the apparent age of surface sediments.