Published in

American Thoracic Society, American Journal of Respiratory Cell and Molecular Biology, 5(31), p. 510-516, 2004

DOI: 10.1165/rcmb.2004-0158oc

Links

Tools

Export citation

Search in Google Scholar

Connective Tissue Growth Factor Is Crucial to Inducing a Profibrotic Environment in “Fibrosis-Resistant” Balb/c Mouse Lungs

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The individual susceptibility to pulmonary fibrosis (PF) remains a mystery, suggesting a role for genetic predisposition. The pathogenesis of PF involves a multitude of factors mediating crosstalk between various tissue components. Some factors, such as transforming growth factor beta, are recognized as key elements in the process, whereas the role of others, such as connective tissue growth factor (CTGF), is unclear. We investigated if Balb/c mice, known to be fibrosis resistant partly due to lack of CTGF induction upon stimulation with bleomycin, can be transformed into fibrosis-sensitive individuals by generation of a CTGF-rich environment using transient overexpression of CTGF by adenoviral gene transfer (AdCTGF). We show that AdCTGF is not sufficient to cause fibrosis, and that bleomycin challenge results in inflammation, but not fibrosis, in Balb/c mouse lungs. This inflammation is accompanied by lower levels of CTGF and tissue inhibitor of metalloproteinase-1 gene expression compared with fibrosis-prone C57BL/6 mice. However, concomitant administration of AdCTGF and bleomycin leads to a persistent upregulation of tissue inhibitor of metalloproteinase-1 gene and a significant fibrotic response in Balb/c similar to that in C57BL/6 mice. We propose that CTGF is an important mediator in the pathogenesis of PF in that it provides a local microenvironment in the lung that causes individual susceptibility. CTGF should be considered as a novel drug target and as a potential marker for identifying individuals at risk.