Published in

Wiley, Advanced Functional Materials, 2(19), p. 235-241, 2009

DOI: 10.1002/adfm.200801008

Links

Tools

Export citation

Search in Google Scholar

Preparation of Functional Hybrid Glass Material from Platinum (II) Complexes for Broadband Nonlinear Absorption of Light

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The synthesis of trans-di(arylalkynyl)diphosphine platinum(II) complexes bearing trialkoxysilane groups is described, as well as the preparation of siloxane-based hybrid materials from organometallic chromophores through a modified sol–gel process. Glass materials prepared from trans-[P(n–Bu)3]2Pt[(C≡C–p–C6H4–C≡C–p–C6H4–CH2O(CO)NH(CH2)3Si(OC2H5)3]2 generally show spectral transmittance, absorption and luminescence similar to that of solutions reported in the literature. Measurements of optical power limiting for the hybrid glass are carried out, and show broadband nonlinear absorption throughout the whole visible wavelength range with clamping values in the range 0.2–7 µJ at 120 mM chromophore concentration. The sol–gel process using urethane-propyltriethoxysilane-functionalized chromophores as precursors appears to be a valid method for formation of robust silicate materials with grafted diarylethynyl Pt(II) complexes for OPL devices.