Published in

American Chemical Society, ACS Applied Materials and Interfaces, 7(6), p. 5175-5182, 2014

DOI: 10.1021/am500467m

Links

Tools

Export citation

Search in Google Scholar

Samarium and Yttrium Codoped BaCeO3 Proton Conductor with Improved Sinterability and Higher Electrical Conductivity

Journal article published in 2014 by Zhen Shi, Wenping Sun ORCID, Zhongtao Wang, Jing Qian, Wei Liu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Acceptor-doped barium cerate is considered as one of the state-of-the-art high temperature proton conductors (HTPCs), and the proton conductivity of such HTPCs is heavily dependent on the dopant. In this work, a codoping strategy is employed to improve the electrical conductivity and sinterability of BaCeO3-based HTPC. BaCe0.8SmxY0.2–xO3−δ (0 ≤ x ≤ 0.2) powders are synthesized by a typical citrate–nitrate combustion method. The XRD and Raman spectra reveal all the compounds have an orthorhombic perovskite structure. The effects of Sm and/or Y doping on the sinterability and electrical conductivity under different atmospheres are carefully investigated. The SEM results of the sintered BaCe0.8SmxY0.2–xO3−δ pellets indicate a significant sintering enhancement with increasing Sm concentration. BaCe0.8Sm0.1Y0.1O3−δ exhibits the highest electrical conductivity in hydrogen among the BaCe0.8SmxY0.2–xO3−δ pellets. Anode-supported BaCe0.8Sm0.1Y0.1O3−δ electrolyte membranes are also fabricated via a drop-coating process, and the corresponding single cell exhibits desirable power performance and durability at low temperatures. The results demonstrate that BaCe0.8Sm0.1Y0.1O3−δ is a promising proton conductor with high conductivity and sufficient sinterability for proton-conducting solid oxide fuel cells operating at reduced temperatures.