Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Medical Imaging, 3(33), p. 794-794

DOI: 10.1109/tmi.2014.2307811

Links

Tools

Export citation

Search in Google Scholar

Correction to “SCoRS—A Method Based on Stability for Feature Selection and Mapping in Neuroimaging” [Jan 14 85-98]

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Feature selection (FS) methods play two important roles in the context of neuroimaging based classification: potentially increase classification accuracy by eliminating irrelevant features from the model and facilitate interpretation by identifying sets of meaningful features that best discriminate the classes. Although the development of FS techniques specifically tuned for neuroimaging data is an active area of research, up to date most of the studies have focused on finding a subset of features that maximizes accuracy. However, maximizing accuracy does not guarantee reliable interpretation as similar accuracies can be obtained from distinct sets of features. In the current paper we propose a new approach for selecting features: SCoRS (Survival Count on Random Subsamples) based on a recently proposed Stability Selection theory. SCoRS relies on the idea of choosing relevant features that are stable under data perturbation. Data are perturbed by iteratively subsampling both features (subspaces) and examples. We demonstrate the potential of the proposed method in a clinical application to classify depressed patients versus healthy individuals based on fMRI data acquired during visualization of happy faces.