Published in

Portland Press, Biochemical Journal, 2(277), p. 393-397, 1991

DOI: 10.1042/bj2770393

Links

Tools

Export citation

Search in Google Scholar

Specificity of dopachrome tautomerase and inhibition by carboxylated indoles. Considerations on the enzyme active site

Journal article published in 1991 by P. Aroca, F. Solano ORCID, J. C. Garcia-Borron, J. A. Lozano
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dopachrome tautomerase (EC 5.3.2.3) catalyses the tautomerization of dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA) within the melanin-formation pathway. We have analysed a series of substrate analogues and related compounds as possible substrates and inhibitors of tautomerization. The enzyme appears to be highly specific since D-dopachrome, alpha-methyldopachrome, dopaminochrome, adrenochrome methyl ether and deoxyadrenochrome are not substrates. Conversely, dopachrome tautomerase catalyses the tautomerization of dopachrome methyl ester, suggesting that a carboxy group, either free or as a methyl ester, is essential for enzyme recognition. No inhibition of dopachrome tautomerization was observed in the presence of either semiquinonic compounds, such as tropolone and L-mimosine, or pyrrole-2-carboxylic acid and unsubstituted indole. However, a number of indole derivatives, including DHICA, the product of dopachrome tautomerization, and the analogues 5-hydroxyindole-2-carboxylic and indole-2-carboxylic acid were able to inhibit the enzyme. Furthermore, indoles with a side chain at position 3 of the ring and containing a carboxylic group at the gamma-position of this chain, such as L-tryptophan or indole-3-propionic acid, are stronger inhibitors of the enzyme. Indole-3-carboxylic acid, indole-3-acetic acid and indole-3-butyric acid are very weak inhibitors, showing that the carboxylic group needs to be located at an optimal distance from the indole ring to mimic the carboxylic group at position 2 on the authentic substrate.