Published in

American Physical Society, Physical review B, 13(77)

DOI: 10.1103/physrevb.77.134206

Links

Tools

Export citation

Search in Google Scholar

Short-range order and precipitation in Fe-rich Fe-Cr alloys: Atomistic off-lattice Monte Carlo simulations

Journal article published in 2008 by Paul Erhart ORCID, Alfredo Caro, Magdalena Serrano de Caro, Babak Sadigh
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Short-range order (SRO) in Fe-rich Fe-Cr alloys is investigated by means of atomistic off-lattice Monte Carlo simulations in the semi-grand canonical ensemble using classical interatomic potentials. The SRO parameter defined by Cowley [Phys. Rev. B 77, 669 (1950)] is used to quantify the degree of ordering. In agreement with experiments a strong ordering tendency in the Cr distribution at low Cr concentrations (~< 5%) is observed, as manifested in negative values of the SRO parameters. For intermediate Cr concentrations (5% ~< c_Cr ~< 15%) the SRO parameter for the alpha-phase goes through a minimum, but at the solubility limit the alpha-phase still displays a rather strong SRO. In thermodynamic equilibrium for concentrations within the two-phase region the SRO parameter measured over the entire sample therefore comprises the contributions from both the alpha and alpha-prime phases. If both of these contributions are taken into account, it is possible to quantitatively reproduce the experimental results and interpret their physical implications. It is thereby shown that the inversion of the SRO observed experimentally is due to the formation of stable (supercritical) alpha-prime precipitates. It is not related to the loss of SRO in the alpha-phase or to the presence of unstable (subcritical) Cr precipitates in the alpha-phase. Comment: 9 pages, 8 figures