Dissemin is shutting down on January 1st, 2025

Published in

Springer, Pflügers Archiv European Journal of Physiology, 6(457), p. 1265-1274, 2008

DOI: 10.1007/s00424-008-0604-4

Links

Tools

Export citation

Search in Google Scholar

Malformation of junctional microdomains in cataract lens membranes from a type II diabetes patient

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In eye core lens membranes, aquaporin-0 (AQP0) and connexins (Cx) form together well-structured supramolecular assemblies, the junctional microdomains, in which they assure water, ion, metabolite, and waste transport. Additionally, they mediate cell-cell adhesion-forming thin junctions (AQP0) and gap junctions (Cx). We have used atomic force microscopy and biochemical methods to analyze and compare the structure of junctional microdomains in human cataract lens membranes from a type II diabetes patient and healthy lens membranes from calf. A healthy intercellular junctional microdomain consists in average of approximately 150 tetragonally arranged (a = b = 65.5 A, gamma = 90 degrees) AQP0 tetramers surrounded by densely packed non-ordered connexon channels. Gap-junction connexons act as lineactants inside the membrane and confine AQP0 in the junctional microdomains. In the diabetic cataract lens, connexons were degraded, and AQP0 arrays are malformed. We conceptualize that absence of connexons lead to breakdown of cell nutrition.