Published in

De Gruyter, Statistical Applications in Genetics and Molecular Biology, 1(10), p. 1-27

DOI: 10.2202/1544-6115.1730

Links

Tools

Export citation

Search in Google Scholar

High-Dimensional Regression and Variable Selection Using CAR Scores

Journal article published in 2010 by Verena Zuber, Korbinian Strimmer
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Variable selection is a difficult problem that is particularly challenging in the analysis of high-dimensional genomic data. Here, we introduce the CAR score, a novel and highly effective criterion for variable ranking in linear regression based on Mahalanobis-decorrelation of the explanatory variables. The CAR score provides a canonical ordering that encourages grouping of correlated predictors and down-weights antagonistic variables. It decomposes the proportion of variance explained and it is an intermediate between marginal correlation and the standardized regression coefficient. As a population quantity, any preferred inference scheme can be applied for its estimation. Using simulations, we demonstrate that variable selection by CAR scores is very effective and yields prediction errors and true and false positive rates that compare favorably with modern regression techniques such as elastic net and boosting. We illustrate our approach by analyzing data concerned with diabetes progression and with the effect of aging on gene expression in the human brain. The R package “care” implementing CAR score regression is available from CRAN.