Published in

Elsevier, Trends in Cardiovascular Medicine, 4(22), p. 93-98, 2012

DOI: 10.1016/j.tcm.2012.07.002

Links

Tools

Export citation

Search in Google Scholar

Genetic Pathways of Vascular Calcification

Journal article published in 2012 by Marion A. Hofmann Bowman, Elizabeth M. McNally ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vascular calcification is an independent risk factor for cardiovascular disease. Arterial calcification of the aorta, coronary, carotid and peripheral arteries becomes more prevalent with age. Genomewide association studies have identified regions of the genome linked to vascular calcification, and these same regions are linked to myocardial infarction risk. The 9p21 region linked to vascular disease and inflammation also associates with vascular calcification. In addition to these common variants, rare genetic defects can serve as primary triggers of accelerated and premature calcification. Infancy-associated calcific disorders are caused by loss of function mutations in ENPP1 an enzyme that produces extracellular pyrophosphate. Adult onset vascular calcification is linked to mutations NTE5, another enzyme that regulates extracellular phosphate metabolism. Common conditions that secondarily enhance vascular calcification include atherosclerosis, metabolic dysfunction, diabetes, and impaired renal clearance. Oxidative stress and vascular inflammation, along with biophysical properties, converge with these predisposing factors to promote soft tissue mineralization. Vascular calcification is accompanied by an osteogenic profile, and this osteogenic conversion is seen within the vascular smooth muscle itself as well as the matrix. Herein we will review the genetic causes of medial calcification in the smooth muscle layer, focusing on recent discoveries of gene mutations that regulate extracellular matrix phosphate production and the role of S100 proteins as promoters of vascular calcification.