Published in

American Chemical Society, Journal of Physical Chemistry C, 45(111), p. 16996-17007, 2007

DOI: 10.1021/jp0762774

Links

Tools

Export citation

Search in Google Scholar

Crystal Engineering in Two Dimensions: An Approach to Molecular Nanopatterning

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid-solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C 7 to C 30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA "flower pattern" can coexist temporarily with the linear TMA-alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA-alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd-even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA-alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.