Published in

American Chemical Society, Journal of the American Chemical Society, 46(135), p. 17359-17368, 2013

DOI: 10.1021/ja406924v

Links

Tools

Export citation

Search in Google Scholar

Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Regarding the importance of the biological effects of nanomaterials, there is still limited knowledge about the binding structure and stability of the protein corona on nanomaterials and the subsequent impacts. Here we designed a hard serum albumin protein corona (BSA) on CTAB-coated gold nanorods (AuNRs) and captured the structure of protein adsorption using synchrotron radiation X-ray absorption spectroscopy, microbeam X-ray fluorescent spectroscopy, and circular dichroism in combination with molecular dynamics simulations. The protein adsorption is attributed to at least 12 Au-S bonds and the stable corona reduced the cytotoxicity of CTAB/AuNRs. These combined strategies using physical, chemical, and biological approaches will improve our understanding of the protective effects of protein coronas against the toxicity of nanomaterials. These findings have shed light on a new strategy for studying interactions between proteins and nanomaterials, and this information will help further guide the rational design of nanomaterials for safe and effective biomedical applications.