Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Experimental Physiology, 4(92), p. 769-777, 2007

DOI: 10.1113/expphysiol.2006.036814

Links

Tools

Export citation

Search in Google Scholar

Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: Relation to endothelial function

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reduction in cerebrovascular reactivity to CO(2) and/or endothelial function that occurs in the early hours after waking are potential causes for the increased risk for cardiovascular events at this time point. It is unknown whether cerebral autoregulation is reduced in the morning. We tested the hypothesis that early morning reduction in endothelium-dependent vascular reactivity would be linked to changes in cerebrovascular reactivity to CO(2) and cerebral autoregulation (CA). Overnight changes in a dynamic cerebral autoregulation index (ARI) were determined from continuous recordings of blood flow velocity in the middle cerebral artery (MCAv) and arterial blood pressure (BP) during transiently induced hypotension in 20 individuals. Frontal cortical oxygenation (near infrared spectroscopy) and cerebral haemodynamics were also monitored during hypercapnia and before and during 3 min of active standing. Brachial artery flow-mediated endothelium-dependent vasodilatation (FMD) and endothelium-independent dilatation (NFMD) were also monitored. From evening to morning, there was a significant lowering in ARI (5.3 +/- 0.5 versus 4.7 +/- 0.6 a.u.; P < 0.05), cerebrovascular reactivity to CO(2) (5.3 +/- 0.6 versus 4.6 +/- 1.1% mmHg(-1); P < 0.05) and FMD (7.6 +/- 0.9 versus 6.0 +/- 1.4%; P < 0.05). The lowered FMD was related to the decrease in cerebrovascular reactivity to CO(2) (r = 0.76; P < 0.05). Transient reductions in morning MCAv and cortical oxyhaemoglobin concentrations were observed upon resuming a supine-to-upright position (P < 0.05 versus evening). The early morning reduction in cerebral autoregulation may facilitate the onset of cerebrovascular accidents; this may be of particular relevance to at-risk groups, especially upon resuming the upright position.