Published in

American Chemical Society, The Journal of Physical Chemistry A, 9(113), p. 1864-1868, 2009

DOI: 10.1021/jp8106777

Links

Tools

Export citation

Search in Google Scholar

Semiexperimental Equilibrium Structure for the C6Backbone ofcis-1,3,5-Hexatriene; Structural Evidence for Greater π-Electron Delocalization with Increasing Chain Length in Polyenes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Twenty-five microwave lines were observed for cis-1,3,5-hexatriene (0.05 D dipole moment) and a smaller number for its three (13)C isotopomers in natural abundance. Ground-state rotational constants were fitted for all four species to a Watson-type rotational Hamiltonian for an asymmetric top (kappa = -0.9768). Vibration-rotation (alpha) constants were predicted with a B3LYP/cc-pVTZ model and used to adjust the ground-state rotational constants to equilibrium rotational constants. The small inertial defect for cis-hexatriene shows that the molecule is planar, despite significant H-H repulsion. The substitution method was applied to the equilibrium rotational constants to give a semiexperimental equilibrium structure for the C(6) backbone. This structure and one predicted with the B3LYP/cc-pVTZ model show structural evidence for increased pi-electron delocalization in comparison with butadiene, the first member of the polyene series.