Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Leukocyte Biology, 2(90), p. 293-303, 2011

DOI: 10.1189/jlb.0910510

Links

Tools

Export citation

Search in Google Scholar

Arginine transport in human monocytic leukemia THP-1 cells during macrophage differentiation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

L-arginine metabolism in myeloid cells plays a central role in the processes of macrophage activation and in the regulation of immune responses. In this study, we investigated arginine transport activity and the expression of the related transporter genes during the differentiation of monocytes to macrophages. We show here that the induction of THP-1 monocyte differentiation by PMA markedly increases the expression of SLC7A7 mRNA and of y(+)LAT1 protein and consequently, the activity of system y(+)L-mediated arginine transport. Conversely, the activity of system y(+) decreases during macrophage differentiation as a result of a reduction in CAT1 protein expression. The PMA-induced, macrophage-differentiated phenotype and the increased activity of system y(+)L through the induction of SLC7A7 gene are mediated by the specific activation of PKCβ. SLC7A7 gene silencing causes a significant reduction of system y(+)L activity and a subsequent, marked increase of arginine and lysine cell content, thus suggesting that in macrophagic cells, system y(+)L activity is mainly directed outwardly. Differentiating agents other than PMA, i.e., VD3 and ATRA, are equally effective in the stimulation of system y(+)L transport activity through the increased expression of SLC7A7 mRNA and y(+)LAT1 protein. Moreover, we found that also during differentiation of human monocytes from peripheral blood SLC7A7 mRNA and system y(+)L activity are increased. These findings point to SLC7A7 gene as a marker of macrophage differentiation.