Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Medical Imaging, 10(27), p. 1415-1424, 2008

DOI: 10.1109/tmi.2008.922189

Links

Tools

Export citation

Search in Google Scholar

Reduced Encoding Diffusion Spectrum Imaging Implemented With a Bi-Gaussian Model

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Diffusion spectrum imaging (DSI) can map complex fiber microstructures in tissues by characterizing their 3-D water diffusion spectra. However, a long acquisition time is required for adequate q-space sampling to completely reconstruct the 3-D diffusion probability density function. Furthermore, to achieve a high q-value encoding for sufficient spatial resolution, the diffusion gradient duration and the diffusion time are usually lengthened on a clinical scanner, resulting in a long echo time and low signal-to-noise ratio of diffusion-weighted images. To bypass long acquisition times and strict gradient requirements, the reduced-encoding DSI (RE-DSI) with a bi-Gaussian diffusion model is presented in this study. The bi-Gaussian extrapolation kernel, based on the assumption of the bi-Gaussian diffusion signal curve across biological tissue, is applied to the reduced q-space sampling data in order to fulfill the high q-value requirement. The crossing phantom model and the manganese-enhanced rat model served as standards for accuracy assessment in RE-DSI. The errors of RE-DSI in estimating fiber orientations were close to the noise limit. Meanwhile, evidence from a human study demonstrated that RE-DSI significantly decreased the acquisition time required to resolve complex fiber orientations. The presented method facilitates the application of DSI analysis on a clinical magnetic resonance imaging system.