Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Harmful Algae, (37), p. 194-202

DOI: 10.1016/j.hal.2014.06.007

Links

Tools

Export citation

Search in Google Scholar

Brevetoxin exposure, superoxide dismutase activity and plasma protein electrophoretic profiles in wild-caught Kemp's ridley sea turtles (Lepidochelys kempii) in southwest Florida

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Because of their vulnerable population status, assessing exposure levels and impacts of toxins on the health status of Gulf of Mexico marine turtle populations is critical. From 2011 to 2013, two large blooms of the red tide dinoflagellate, Karenia brevis, occurred along the west coast of Florida USA (from October 2011 to January 2012 and October 2012 to April 2013). Other than recovery of stranded individuals, it is unknown how harmful algal blooms affected the Kemp's ridley sea turtles (Lepidochelys kempii) inhabiting the affected coastal waters. It is essential to gather information regarding brevetoxin exposure in these turtles to determine if it poses a threat to marine turtle health and survival. From April 2012 to May 2013, we collected blood from 13 immature Kemp's ridley turtles captured in the Pine Island Sound region of the Charlotte Harbor estuary. Nine turtles were sampled immediately after or during the red tide events (bloom group) while four turtles were sampled between the events (non-bloom group). Plasma was analyzed for total brevetoxins (reported as ng PbTx-3 eq/mL), superoxide dismutase (SOD) activity, total protein concentration and protein electrophoretic profiles (albumin, alpha-, beta- and gamma-globulins). Brevetoxin concentrations ranged from 7.0 to 33.8 ng PbTx-3 eq/mL. Plasma brevetoxin concentrations in the nine turtles sampled during or immediately after the red tide events were significantly higher (by 59%, P = 0.04) than turtles sampled between events. No significant correlations were observed between plasma brevetoxin concentrations and plasma proteins or SOD activity, most likely due to the small sample size; however alpha-globulins tended to increase with increasing brevetoxin concentrations in the bloom group. Smaller (carapace length and mass) bloom turtles had higher plasma brevetoxin concentrations than larger bloom turtles, possibly due to a growth dilution effect with increasing size. The research presented here improves the current understanding of potential impacts of environmental brevetoxin exposure on marine turtle health and survival.