Published in

American Chemical Society, The Journal of Physical Chemistry A, 43(116), p. 10467-10479, 2012

DOI: 10.1021/jp3072316

Links

Tools

Export citation

Search in Google Scholar

Combined Crossed Beam and Theoretical Studies of the N(2D) + C2H4 Reaction and Implications for Atmospheric Models of Titan

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dynamics of the H displacement channels in the reaction N((2)D) + C(2)H(4) have been investigated by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at two different collision energies (17.2 and 28.2 kJ/mol). The interpretation of the scattering results is assisted by new electronic structure calculations of stationary points and product energetics for the C(2)H(4)N ground state doublet potential energy surface. RRKM statistical calculations have been performed to derive the product branching ratio under the conditions of the present experiments and of the atmosphere of Titan. Similarities and differences with respect to a recent study performed in crossed beam experiments coupled to ionization via tunable VUV synchrotron radiation are discussed (Lee, S.-H.; et al. Phys. Chem. Chem. Phys.2011, 13, 8515-8525). Implications for the atmospheric chemistry of Titan are presented.