Published in

American Chemical Society, Biochemistry, 24(41), p. 7802-7810, 2002

DOI: 10.1021/bi020120e

Links

Tools

Export citation

Search in Google Scholar

Nucleoplasmin Interaction with Protamines. Involvement of the Polyglutamic Tract †

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Different recombinant forms of nucleoplasmin including truncations at the carboxyl-terminal end of the molecule (r-NP121, r-NP142) have been expressed and purified. All of them were found to oligomerize, forming pentameric complexes which, according to their hydrodynamic properties, can be modeled by oblate ellipsoids of constant width. In this model, the highly charged carboxyl ends appear to be arranged around a pentameric core along the plane defined by the major axes of the ellipsoid. Importantly, all the recombinant forms appear to be able to decondense protamine-containing sperm nuclei. However, although the stoichiometry with which protamines bind to these forms appears to be constant (2.5 mol of protamine/mol of nucleoplasmin pentamer), the efficiency with which they remove protamines from the sperm DNA decreases in the following order: o-NP > r-NP142 > or = r-NP > r-NP121. Therefore, the main polyglutamic tract of nucleoplasmin (which is absent in r-NP121), while enhancing the efficiency of protamine removal, is not indispensable for sperm chromatin decondensation in the biological model we have used.