Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of African Earth Sciences, 4(35), p. 489-502, 2002

DOI: 10.1016/s0899-5362(02)00154-9

Links

Tools

Export citation

Search in Google Scholar

Foredeep submarine fans and forebulge deltas: Orogenic off-loading in the underfilled Karoo Basin

Journal article published in 2002 by O. Catuneanu, P. J. Hancox, B. Cairncross, B. S. Rubidge ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Third-order sequence stratigraphic analysis of the Early Permian marine to continental facies of the Karoo Basin provides a case study for the sedimentation patterns which may develop in an underfilled foreland system that is controlled by a combination of supra- and sublithospheric loads. The tectonic regime during the accumulation of the studied section was dominated by the flexural rebound of the foreland system in response to orogenic quiescence in the Cape Fold Belt, which resulted in foredeep uplift and forebulge subsidence. Coupled with flexural tectonics, additional accommodation was created by dynamic loading related to the process of subduction underneath the basin. The long-wavelength dynamic loading led to the subsidence of the peripheral bulge below base level, which allowed for sediment accumulation across the entire foreland system.A succession of five basinwide regressive systems tracts accumulated during the Artinskian (∼5 My), consisting of foredeep submarine fans and correlative forebulge deltas. The progradation of submarine fans and deltaic systems was controlled by coeval forced and normal regressions of the proximal and distal shorelines of the Ecca interior seaway respectively. The deposition of each regressive systems tract was terminated by basinwide transgressive episodes, that may be related to periodic increases in the rates of long-wavelength dynamic subsidence.