Published in

American Association for Cancer Research, Cancer Research, 7(72), p. 1836-1843, 2012

DOI: 10.1158/0008-5472.can-11-2195

Links

Tools

Export citation

Search in Google Scholar

Rapamycin Resistance Is Linked to Defective Regulation of Skp2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The mammalian target of rapamycin (mTOR) plays a role in controlling malignant cellular growth. mTOR inhibitors, including rapamycin (sirolimus), are currently being evaluated in cancer trials. However, a significant number of tumors are rapamycin resistant. In this study, we report that the ability of rapamycin to downregulate Skp2, a subunit of the ubiquitin protein ligase complex, identifies tumors that are sensitive to rapamycin. RNA interference (RNAi)–mediated silencing of Skp2 in human tumor cells increased their sensitivity to rapamycin in vitro and inhibited the growth of tumor xenografts in vivo. Our findings suggest that Skp2 levels are a key determinant of antitumor responses to mTOR inhibitors, highlighting a potentially important pharmacogenomic marker to predict sensitivity to rapamycin as well as Skp2 silencing strategies for therapeutic purposes. Cancer Res; 72(7); 1836–43. ©2012 AACR.