Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (955), 2006

DOI: 10.1557/proc-0955-i15-45

Links

Tools

Export citation

Search in Google Scholar

Low-temperature cathodoluminescence mapping of green, blue, and UV GaInN/GaN LED dies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTGaInN based light emitting diodes (LEDs) play an important role as energy efficient light sources in solid state lighting. A controversial discussion addresses the origin of lateral light emission variations and their correlation with either of the identified defects, e.g., threading dislocations and V-defects. In order to establish any possible correlation of defects and luminescence centers, we analyze three UV, blue and green LED dies by microscopic mapping of spectroscopic cathodoluminescence and secondary electrons at variable low temperature from 7 K to room temperature. Particular effort is being placed on a quantitative analysis of the luminescence signal. Image intensities are not being scaled and offset for highest contrast as otherwise typical for imaging mode. In standard configuration, we analyze image areas of (0.037 mm)2 with pixel resolution of 72 nm. Following regions of strong and weak emission we find that remain bright and dark respectively even at low temperature. Those variations increase with the mean emission wavelength of the LEDs and with temperature. The largest peak wavelength variation associated with the intensity contrast was observed in the green LEDs and amounts to 5 nm. Here the peak wavelength is higher in the dark spots than in the bright ones. This finding corresponds to the general trend when comparing the lower efficiency in longer wavelength green emitters to the blue ones.