Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (720), 2002

DOI: 10.1557/proc-720-h5.3

Links

Tools

Export citation

Search in Google Scholar

An S-Band Reflection-Type Phase Shifter - A Design Example Using Ferroelectrics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOne of the challenges faced in using ferroelectrics in high frequency devices is how to effectively use the material in a circuit design. A compact reflection-type phase shifter fabricated on sapphire substrates coated with ferroelectric barium strontium titanate (BST) thin-films has been built which shows the promise of using BST thin films in the design of tunable microwave devices. The phase shifter, fabricated as one monolithic assembly, consists of a 3dB coupler, meandered line inductors and tunable interdigital capacitors. A continuously variable phase shift range of more than 100° using the branch-line coupler was obtained at a center frequency of 2.95 GHz, and more than 90° phase shift over 200 MHz bandwidth with a bias voltage range from 0 V to 175 V. The phase shifter using the Lange coupler has over 700 MHz bandwidth centered at 2.2 GHz with a phase shift of more than 90° and an insertion loss less than 2 dB and return loss of greater than 14 dB, over a bias voltage range from 0 V to 160 V. The loss of the BST phase shifter presented in this work is on the order of other commercially available RF front-end components, such as bandpass filters and RF switches. This holds promise for the practical realization of smart antenna systems in cellular handsets and wireless LAN cards.