Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry C, 22(111), p. 7848-7850, 2007

DOI: 10.1021/jp0731654

Links

Tools

Export citation

Search in Google Scholar

Hydroxyl-Induced Wetting of Metals by Water at Near-Ambient Conditions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report different wetting properties of Cu(110) and Cu(111) at near-ambient conditions using in situ photoemission spectroscopy. At near-ambient conditions of pressure (1 Torr) and temperature (295 K), the Cu(110) surface is covered with a mixed OH and H2O layer, whereas the Cu(111) surface remains clean and adsorbate-free. We show that wetting is controlled by the presence of OH groups on the surface, acting as anchors for water adsorption. Hydroxylation of the Cu(110) surface is facilitated by a lower activation barrier for water dissociation compared to Cu(111).